Δημοσιεύσεις

Project Acronym: Q2D-2
Title: Density-functional theory studies on two-dimensional (2D), quasi-2D, and layered materials
Affiliation: national technical university of athens
Pi: Tsetseris Leonidas
Research Field: chemical sciences and materials

Remarkable Enhancement of the Hole Mobility in Several Organic Small‐Molecules, Polymers, and Small‐Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p‐Dopant B(C6F5)3
by Panidi Julianna, Paterson Alexandra F., Khim Dongyoon, Fei Zhuping, Han Yang, Tsetseris Leonidas, Vourlias George, Patsalas Panos A., Heeney Martin and Anthopoulos Thomas D.
Abstract:
Abstract Improving the charge carrier mobility of solution‐processable organic semiconductors is critical for the development of advanced organic thin‐film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small‐molecules, polymers, and small‐molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)3 is shown to have a remarkable impact are the blends of 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF‐TESADT:PTAA) and 2,7‐dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene:poly(indacenodithiophene‐co‐benzothiadiazole) (C8‐BTBT:C16‐IDTBT), for which hole mobilities of 8 and 11 cm2 V−1 s−1, respectively, are obtained. Doping of the 6,13‐bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)3 is also shown to increase the maximum hole mobility to 3.7 cm2 V−1 s−1. Analysis of the single and multicomponent materials reveals that B(C6F5)3 plays a dual role, first acting as an efficient p‐dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p‐doping and dopant‐induced long‐range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.
Reference:
Remarkable Enhancement of the Hole Mobility in Several Organic Small‐Molecules, Polymers, and Small‐Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p‐Dopant B(C6F5)3 (Panidi Julianna, Paterson Alexandra F., Khim Dongyoon, Fei Zhuping, Han Yang, Tsetseris Leonidas, Vourlias George, Patsalas Panos A., Heeney Martin and Anthopoulos Thomas D.), In Advanced Science, volume 5, 2018.
Bibtex Entry:
@article{doi:10.1002-advs.201700290,
 author = {Panidi Julianna and Paterson Alexandra F. and Khim Dongyoon and Fei Zhuping and Han Yang and Tsetseris Leonidas and Vourlias George and Patsalas Panos A. and Heeney Martin and Anthopoulos Thomas D.},
 title = {Remarkable Enhancement of the Hole Mobility in Several Organic Small‐Molecules, Polymers, and Small‐Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p‐Dopant B(C6F5)3},
 journal = {Advanced Science},
 volume = {5},
 number = {1},
 pages = {1700290},
 year = {2018},
 bibyear = {2018},
 doi = {10.1002/advs.201700290},
 url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201700290},
 eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.201700290},
 abstract = {Abstract Improving the charge carrier mobility of solution‐processable organic semiconductors is critical for the development of advanced organic thin‐film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small‐molecules, polymers, and small‐molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)3 is shown to have a remarkable impact are the blends of 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF‐TESADT:PTAA) and 2,7‐dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene:poly(indacenodithiophene‐co‐benzothiadiazole) (C8‐BTBT:C16‐IDTBT), for which hole mobilities of 8 and 11 cm2 V−1 s−1, respectively, are obtained. Doping of the 6,13‐bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)3 is also shown to increase the maximum hole mobility to 3.7 cm2 V−1 s−1. Analysis of the single and multicomponent materials reveals that B(C6F5)3 plays a dual role, first acting as an efficient p‐dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p‐doping and dopant‐induced long‐range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.},
}